

Trisilazan-1-yl-cyclodisilazane – Expansionen, Kontraktionen und Ringkopplungen

Kerstin Dippel und Uwe Klingebiel*

Institut für Anorganische Chemie der Universität Göttingen, Tammannstraße 4, D-3400 Göttingen

Eingegangen am 7. März 1990

Key Words: Cyclodisilazanes / Ring expansion / Ring contraction / Ring coupling

Trisilazan-1-yl-cyclodisilazanes - Expansions, Contractions, and Ring Couplings

Lithiated trisilazan-1-yl-cyclodisilazanes react in different ways. The lithium derivatives of 2 and 3 react with fluorosilanes with substitution to give 4 and 5. In the reaction of dilithiated 3 with chlorotrimethylsilane the cyclotrisilazane 6 is formed by ring expansion. In the same reaction the symmetrically substituted four-membered ring 7 is obtained, which is formed by ring contraction of the anion of 6. The silyl-bridged ring systems 8-11 are obtained on reaction of dilithiated 3 with fluorosilanes and $F_2BN(SiMe_3)_2$. An analogous silyl-bridged four-membered ring system 12 is formed in the reaction of the eight-membered ring anion with $F_3SiN(SiMe_3)_2$.

Reaktionen von lithiierten Hexamethylcyclotrisilazanen (HMCTS) und Octamethylcyclotetrasilazanen (OMCTS) mit Halogensilanen unterliegen häufig anionischen Gerüstumlagerungen. So steht das Anion des HMCTS in einem temperaturabhängigen Gleichgewicht mit dem Anion des isomeren Vierringsystems¹⁻³⁾ (Gl. 1). Die Lage des Gleichgewichts wird durch elektronische und kinetische Einflüsse der Substituenten bestimmt³⁾.

Lithiierte OMCTS isomerisieren in Abhängigkeit von der Zahl der silylsubstituierten Stickstoffatome entweder zu Cyclotrisilazanen (I) oder zu Trisilazan-1-yl-cyclodisilazanen (II)^{4,5)}. Die Kontraktionstendenz wird auch hier durch thermische, elektronische und kinetische Effekte beeinflußt⁵⁾.

In dieser Arbeit berichten wir über das Reaktionsverhalten der zu OMCTS isomeren lithiierten Trisilazan-1-yl-cyclodisilan II.

Ergebnisse

Die Trisilazan-1-yl-cyclodisilazane 2 und 3 werden in der Reaktion von dilithiierten OMCTS 1^{6} mit *tert*-Butyltrifluorsilan oder Fluortrimethylsilan unter Ringkontraktion in guten Ausbeuten erhalten⁵.

Aufgrund ihrer N-H-funktionalen Seitenkette sind die Trisilazan-1-yl-cyclodisilazane 2 und 3 geeignete Bausteine für den Aufbau größerer Moleküle. Die Monolithiierung von 2 und 3 erfolgt am endständigen Stickstoffatom. Das Lithiumderivat reagiert mit Fluorsilanen zu den Cyclodisi-

Chem. Ber. 123 (1990) 1817-1820 (C) VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1990 0009-2940/90/0909-1817 \$ 3.50+.25/0

lazanen 4 und 5 (Gl. 4). Bei der Darstellung von 5 wird als Nebenprodukt 9 gebildet.

Das Dilithiumderivat von 3 zeigt in Abhängigkeit vom eingesetzten Halogensilan und den Reaktionsbedingungen ein variables Reaktionsverhalten. Die Reaktion mit Chlortrimethylsilan führt nicht zum Tetrasubstitutionsprodukt 6a, vielmehr werden die strukturisomeren Verbindungen 6 und 7 im Verhältnis 1:3 isoliert (Gl. 5).

Für die Bildung von 6 und 7 wird folgender Reaktionsablauf angenommen (Gl. 6): Das intermediär gebildete Vierring-Anion A wird zum strukturisomeren Sechsring-Anion B aufgeweitet^{6,7}. B reagiert mit Chlortrimethylsilan zu 6 und isomerisiert zum Vierringsystem C. 7 entsteht aus C und Chlortrimethylsilan. Für den dargestellten Reaktionsverlauf wird eine kinetische Steuerung angenommen, da eine Substitution von A mit Me₃SiCl nicht gelang. Durch die zwei an der Seitenkette bereits vorhandenen Silylsubstituenten wird in A die Bindung eines weiteren Substituenten an diese sterisch erschwert. 6 und 7 dagegen werden aufgrund ihrer zunehmend höheren Symmetrie dem sterischen Anspruch aller vier Silylsubstituenten gerecht.

Bei der Umsetzung des dilithiierten Cyclodisilazans 3a mit Di- oder Trifluorsilanen im Molverhältnis von 1:2 wird keines der möglichen Tetrasubstitutionsprodukte erhalten. In diesem Fall weicht das Vierringsystem über eine intramolekulare Lithiumfluorid-Abspaltung einer "sterischen Überladung" des Moleküls aus. Aus dieser Kondensationsreaktion resultieren die Verbindungen 8-10, bei denen jeweils zwei Cyclodisilazane über eine Dimethylsilylbrücke verknüpft sind (Gl. 7).

Der in Gl. (7) dargestellte Reaktionsablauf ermöglicht ebenso den Einbau eines Heteroatoms. Durch Umsetzung mit [Bis(trimethylsilyl)amino]difluorboran konnte auf diesem Weg das Diaza-bora-silacyclobutan 11 erhalten werden (Gl. 8).

Moleküle der gleichen Konstitution wie 8-11 werden bei der Reaktion des dilithiierten OMCTS (1) mit [Bis(trimethylsilyl)amino]trifluorsilan erhalten. Dabei erfolgt Ringkontraktion zu dem Difluorsilyl-substituierten Vierring 12a (vgl. Gl. 3). Dieser wird über eine Umlithiierungsreaktion erneut lithiiert und reagiert mit noch in Lösung vorhandenem Fluorsilan zu 12 (Gl. 9).

NMR-Spektren von 4-12

Die Konstitutionsaufklärung der Cyclosilazane 4-12 erfolgte NMR-spektroskopisch. Die Cyclodisilazanstruktur von 8-12 wurde zusätzlich durch IR-Aufnahmen belegt.

Die ¹H-, ¹³C- und ²⁹Si-NMR-Spektren des Cyclodisilazans 5 zeigen für die Dimethylsilylgruppen drei chemische Verschiebungen im Intensitätsverhältnis 1:2:1. Ein Signal einfacher Intensität sowie die Resonanzlinie eines Me₃Si-Substituenten sind zu einem Triplett aufgespalten. Danach sind für 5 zwei Strukturisomere D, E denkbar.

Die Zuordnung erfolgte über die ²⁹Si-NMR-Verschiebung der Me₃Si(I)-Gruppe, die mit $\delta = -3.72$ zu hohem Feld verschoben ist. Dies spricht dafür, daß die Me₃Si(I)-Gruppe wie in der Ausgangsverbindung 3 [δ^{29} Si(SiMe₃) = -4.09] bei 5 direkt an den Vierring (Konstitution D) gebunden ist. Für das Cyclodisilazan 4 konnte anhand des Aufspaltungsmusters und der Lagekonstanz der Me₂CF₂Si(I)-Signale im ²⁹Si-NMR-Spektrum ($\delta = -39.32$, ¹ $J_{SiF} = 288.4$ Hz) gegenüber 2 ($\delta = -39.36$, ¹ $J_{SiF} = 288.8$ Hz) ebenfalls die Konstitution D gefestigt werden.

Im Fall der Tetrakis(trimethylsilyl)-substituierten Verbindungen 6 und 7 wird die Cyclotrisilazanstruktur (6) bzw. die Konstitution eines symmetrisch substituierten Vierringes (7) eindeutig durch die Anzahl und das Intensitätsverhältnis der Resonanzen festgelegt.

Die Struktur der verknüpften Vierringsysteme 8-11 konnten anhand folgender IR- und ¹H-, ¹³C- und ²⁹Si-NMR-spektroskopischen Charakteristika belegt werden.

a) Die IR-Spektren von 8-11 weisen eine für disilylierte Cyclodisilazane charakteristische Bande bei 1010 bis 1025 cm⁻¹ auf, die der Si₂N₂-Gerüstschwingung zugeordnet werden kann⁸.

b) Die ¹H-, ¹³C- und ²⁹Si-NMR-Signale des $(SiMe_2N)_2$ -Vierringes liegen jeweils im erwarteten Bereich und weichen nur geringfügig von den entsprechenden Resonanzen der Ausgangsverbindungen 3 ab (Tab. 1). Die Signale der an den $(SiMe_2N)_2$ -Vierring gebundenen Me₃Si-Gruppe sind in allen Spektren von 8–11 nahezu lagekonstant gegenüber 3 (Tab. 1).

Tab. 1. Vergleichende, relativ lagekonstante NMR-Signale von 3, 8-11

	$\delta^{1}H$		$\delta^{13}C$		δ ²⁹ Si	
	(SiMe ₂ N) ₂	SiMe ₃	$(SiMe_2N)_2$	SiMe ₃	$(SiMe_2N)_2$	SiMe ₃
3	0.24	0.001	5.26	2.33	3.24	-4.09
8	0.27	0.001	5.37	2.36	3.72	-4.00
9	0.26	0.001	5.38	2.31	3.87	-4.09
10	0.25	0.003	5.57	2.36	3.25	-4.14
11	0.26	0.002	5.58	2.35	3.46	-4.15

c) In den ²⁹Si-NMR-Spektren von 8-11 wird eine Hochfeldverschiebung im Bereich von $\delta = -19.6$ bis -20.7 beobachtet, welche der Resonanz der ringverbrückenden Dimethylsilylgruppe zugeordnet wird. Drei über zwei Dimethylsilylbrücken verknüpfte Cyclodisilazane, deren Struktur durch eine Röntgenstrukturanalyse bestätigt wurde, zeigen im ²⁹Si-NMR-Spektrum für die verbrückende Dimethylsilylgruppe eine Hochfeldverschiebung im gleichen Bereich⁹).

Verbindung 12 konnte anhand eines NMR-spektroskopischen Vergleichs mit 8-11 dieselbe Grundstruktur zugeordnet werden. Das ¹H-NMR-Spektrum von 12 zeigt für eine der beiden Me₃Si(II)-Gruppen eine Kopplungskonstante von 2.4 Hz, während für die zweite Me₃Si(II)-Gruppe keine Kopplung beobachtet wird. Die auch in 8 und 9 beobachtete Nichtäquivalenz der Methylprotonen der Si-Me₂(b)- und SiMe₂(c)-Gruppe beruht auf der Chiralität des SiF-Ringatoms.

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für die Unterstützung dieser Arbeit.

Experimenteller Teil

MS: Varian CH-5. – NMR: 30proz. Lösungen in C_6H_6/C_6D_6 (4, 5) bzw. CDCl₃ (6–12); TMS, C_6F_6 intern, $BF_3 \cdot Et_2O$ extern; Bruker AM-250-Kernresonanzgerät.

Verbindungen 4, 5: Lösungen von 0.20 mol des Cyclodisilazans 2 bzw. $3^{5)}$ in 100 ml *n*-Hexan werden bei 0°C (2) bzw. Raumtemp. (3) mit der äquimolaren Menge *n*-Butyllithium versetzt. Die Lösung von 2 wird zur vollständigen Butan-Abspaltung auf Raumtemp. erwärmt, die Lösung von 3 1 h unter Rückfluß erhitzt. Unter Kühlen auf -30°C werden 0.020 mol des entsprechenden Fluorsilans eingeleitet bzw. zugetropft. Das Rohprodukt wird im Hochvak. in eine Kühlfalle kondensiert. Die Reinigung von 4 und 5 erfolgt durch Destillation.

1-(tert-Butyldifluorsilyl)-3-[5-tert-butyl-5,5-difluor-4-(difluormethylsilyl)-1,1,3,3-tetramethyltrisilazan-1-yl]-2,2,4,4-tetramethylcyclodisilazan (4): Sdp. 92 °C/0.01 mbar; Ausb. 6.7 g (54%). – MS (FI-Messung): m/z (%) = 616 (16) [M⁺], 601 (100) [M – CH₃]⁺. – ¹³C-NMR: δ = -3.02 SiCF₂ ($^{2}J_{CF} = 23.0$, $^{4}J_{CF} = 1.2$ Hz), 3.52 SiC₂, 3.90 SiC₂, 5.15 (NSiC₂)₂, 16.81 CC₃ ($^{2}J_{CF} = 21.7$ Hz), 18.72 CC₃ ($^{2}J_{CF} = 20.2$ Hz), 25.41 CC₃, 26.25 CC₃ ($^{3}J_{CF} = 0.8$ Hz). – ¹⁹F-NMR: δ = 19.24 SiF₂CMe₃ (Ring), 28.32 SiF₂CMe₃ (Kette), 41.52 SiF₂Me. – ²⁹Si-NMR: –39.32 SiF₂CMe₃ ($^{1}J_{SiF} = 288.4$ Hz), –35.32 SiF₂CMe₃ ($^{1}J_{SiF} = 298.8$ Hz), – 32.20 SiF₂Me ($^{1}J_{SiF} =$ 271.7 Hz), –11.23 [(NSi)₂-Si], –3.00 Si – N(SiF₂)₂, 7.08 (N – Si₂)₂.

1-[5-tert-Butyl-5,5-difluor-4-(trimethylsilyl)-1,1,3,3-tetramethyltrisilazan-1-yl]-2,2,4,4-tetramethyl-3-(trimethylsilyl)cyclotrisilazan(5): Sdp. 95°C/0.01 mbar; Ausb. 6.7 g (60%). - MS: m/z (%) =543 (100) [M - CH₃]⁺, FI-Messung: 558 (6) [M⁺]. - ¹H-NMR: $\delta = -0.01$ SiMe₃, 0.20 SiMe₂, 0.31 SiMe₃ (⁵J_{HF} = 0.9 Hz), 0.34 $(NSiMe_2)_2$, 0.39 $SiMe_2$ (⁵ $J_{HF} = 0.8$ Hz), 1.09, CMe_3 (⁴ $J_{HF} =$ 1.2 Hz). $-{}^{13}$ C-NMR: $\delta = 2.52 \text{ SiC}_3$, 4.15 SiC₂, 4.42 SiC₃ (${}^{4}J_{CF} =$ 2.0 Hz), 5.52 (NSiC₂)₂, 5.76 SiC₂ (${}^{4}J_{CF} = 1.9$ Hz), 18.37 CC₃ (${}^{2}J_{CF} =$ 22.0 Hz), 27.43 CC₃. - ¹⁹F-NMR: $\delta = 34.40$. - ²⁹Si-NMR: $\delta =$ -34.04 SiF (¹ $J_{SiF} = 296.5$ Hz), -12.61 [(NSi)₂-Si], -5.14Me₂SiNSiF₂, -3.72 SiMe₃ (Ring), 3.86 (NSi)₂, 4.80 SiMe₃ (Kette).

Verbindungen 6, 7: 20 mmol (8.7 g) 3⁵⁾ in 100 ml n-Hexan werden mit 40 mmol n-Butyllithium dimetalliert. Zur Butan-Abspaltung wird 1 h zum Sieden erhitzt. Anschließend werden 20 ml THF und 40 mmol (4.3 g) Chlortrimethylsilan zugegeben, und die Lösung wird 4 h unter Rückfluß erhitzt. 7 kristallisiert nach Abtrennung des Lithiumchlorids aus. 6 wird bei der Destillation des Rückstandes erhalten.

1-{[Bis(trimethylsilyl)amino]dimethylsilyl}-2,2,4,4,6,6-hexamethyl-3,5-bis(trimethylsilyl)cyclotrisilazan (6): Sdp. 140°C/0.01 mbar; Schmp. 60 °C, Ausb. 2.3 g (20%). – MS: m/z (%) = 565 (20) [M – CH₃]⁺. - ¹H-NMR: $\delta = 0.20, 0.25$ SiMe₃, 0.34, 0.35 SiMe₂, 0.41 $SiMe_2N(SiMe_2)_2$. - ¹³C-NMR: $\delta = 5.70$, 6.05 SiC_3 , 8.12 Si- $C_2N(SiC_2)_2$, 9.15, 9.25 SiC₂. - ²⁹Si-NMR: $\delta = -8.78$ SiMe₂ (Kette), -5.83 SiMe₂(N - SiMe₂)₂, -2.81 SiMe₂(N - SiMe₃)₂, 0.70, 1.70 SiMe₃.

1,3-Bis { [bis (trimethylsilyl) amino] dimethylsilyl }-2,2,4,4-tetramethylcyclodisilazan (7): Schmp. 105°C, Ausb. 7.2 g (62%). - MS: m/z (%) = 565 (30) [M - CH₃]⁺. - IR: \tilde{v} = 1010 cm⁻¹ (Si₄N₂-Gerüstschwingung). – ¹H-NMR: $\delta = 0.20$ SiMe₂, 0.21 SiMe₃, 0.31 SiMe₂. - ¹³C-NMR: δ = 5.64 SiMe₂, 5.73 SiMe₃, 6.97 SiMe₂. -²⁹Si-NMR: $\delta = -13.52$ SiMe₂, 2.18 SiMe₃, 2.60 (NSiMe₂)₂.

Verbindungen 8-11; 40 mmol des jeweiligen Fluorsilans bzw. Fluorborans werden in 50 ml n-Hexan bei -40°C vorgelegt. Zu dieser Lösung werden 20 mmol der dilithiierten Verbindung 3⁵, in 50 ml n-Hexan gelöst, getropft. Nach Auftauen der Reaktionslösung und Entfernen des entstandenen Lithiumfluorids werden die Produkte 8-11 durch Destillation im Hochvak. gereinigt. 11 liegt nach der Destillation kristallin vor.

[2-Fluor-2,4,4-trimethyl-3-(trimethylsilyl)cyclodisilazan-1yl][2,2,4,4-tetramethyl-3-(trimethylsilyl)cyclodisilazan-1-yl]dimethylsilan (8): Sdp. 75°C/0.01 mbar; Ausb. 9.3 g (94%). – MS: m/z $(\%) = 481 (100) [M - CH_3]^+$. FI-Messung: 496 (22) $[M^+]$. - IR: $\tilde{v} = 1025 \text{ cm}^{-1}$ (Si₄N₂-Gerüstschwingung). – ¹H-NMR: $\delta =$ $-0.001 Me_3Si(NSiMe_2)_2$, 0.03, 0.04 SiMe₂, 0.05 SiMe₃, 0.26 $(NSiMe_2)_2$, 0.28 SiMe₂ (⁵J_{HF} = 0.4 Hz), 0.30 (⁵J_{HF} = 0.4 Hz), 0.33 SiMeF (${}^{3}J_{HF} = 5.2$ Hz). $- {}^{13}$ C-NMR: $\delta = -0.29$ SiC₂F (${}^{2}J_{CF} =$ 31.2 Hz), 2.07 SiC₃NSiF, 2.36 C₃Si(NSiC₂)₂, 4.08, 4.17 SiC₂, 4.76, 4.77 SiC_2 , 5.34, 5.35, 5.38, 5.39 (NSiC₂)₂. - ¹⁹F-NMR: δ = 53.58. - ²⁹Si-NMR: $\delta = -27.75 \text{ SiF} ({}^{1}J_{\text{SiF}} = 306.0 \text{ Hz}), -19.72 \text{ SiMe}_{2}, -4.00$ $Me_3Si - (NSiMc_2)_2$, -2.46 SiMe₃, 2.87 SiMe₂ (Ring), 3.72 (NSiMe₂)₂.

[2-tert-Butyl-2-fluor-4,4-dimethyl-3-(trimethylsilyl)cyclodisilazan-1-yl]/2,2,4,4-tetramethyl-3-(trimethylsilyl)cyclodisilazan-1-yl]dimethylsilan (9): Sdp. 100°C/0.01 mbar; Ausb. 9.9 g (92%). - MS: m/z (%) = 538 (1) [M⁺], 523 (100) [M - CH₃]⁺. - IR: \tilde{v} = 1020 cm^{-1} (Si₄N₂-Gerüstschwingung). – ¹H-NMR: $\delta = -0.001$ $Me_3Si - (NSiMe_2)_2$, 0.07, 0.09 $SiMe_2$, 0.09 $SiMe_3$ 0.26, 0.27 (NSi- $Me_{2}_{2}_{2}$, 0.30 (⁵ $J_{HF} = 0.4$ Hz), 0.35 (⁵ $J_{HF} = 0.4$ Hz) SiMe₂, 1.05 CMe₃ $({}^{4}J_{\rm HF} = 1.1 \text{ Hz}). - {}^{13}\text{C-NMR}: \delta = 2.31 C_{3}\text{Si}(\text{NSiC}_{2})_{2}, 2.75 \text{ SiC}_{3},$ 3.54, 3.63 SiC₂, 4.02 SiC₂, 5.32, 5.32, 5.40, 5.41 (NSiC₂)₂, 18.96 CC₃ $({}^{2}J_{CF} = 25.6 \text{ Hz}), 26.33 \text{ CC}_{3}. - {}^{19}\text{F-NMR}: \delta = 36.63. - {}^{29}\text{Si}$ NMR: $\delta = -28.38$ SiF (¹ $J_{SiF} = 331.8$ Hz), -19.62 SiMe₂, -4.09Me₃Si-(NSiMe₂)₂, -2.85 SiMe₃, 3.87 (NSiMe₂)₂, 4.03 SiMe₂ (Ring).

Bis [2,2,4,4-tetramethyl-3-(trimethylsilyl)cyclodisilazan-1-yl]dimethylsilan (10): Sdp. 85°C/0.01 mbar, Ausb. 9.1 g (92%). - MS: m/z (%) = 477 (100) [M - CH₃]⁺. FI-Messung: 492 (2) [M⁺]. -

IR: $\tilde{v} = 1025$ cm⁻¹ (Si₄N₂-Gerüstschwingung). – ¹H-NMR: $\delta =$ 0.001 SiMe₂, 0.003 SiMe₃, 0.25 (NSiMe₂)₂. - ¹³C-NMR: $\delta = 2.36$ SiC_3 , 3.68 SiC_2 , 5.57 $(NSiC_2)_2$. - ²⁹Si-NMR: $\delta = -20.75 SiMe_2$, -4.14 SiMe₃, 3.25 (NSiMe₂)₂.

{2-[Bis(trimethylsilyl)amino]-4,4-dimethyl-3-(trimethylsilyl)-1,3-diaza-2-bora-4-silacyclobutyl]/ 2,2,4,4-tetramethyl-3-(trimethylsilyl)cyclodisilazan-1-yl/dimethylsilan (11): Sdp. 150°C/0.01 mbar, Ausb. 10.9 g (90%). - MS: m/z (%) = 590 (100) [M - CH₃]⁺. -IR: $\tilde{v} = 1010 \text{ cm}^{-1}$ (Si₄N₂-Gerüstschwingung). – ¹H-NMR: $\delta =$ 0.002 Me₃Si(NSiMe₂)₂, 0.09 SiMe₃, 0.12 SiMe₂, 0.17 N(SiMe₃)₂, 0.26 $(NSiMe_2)_2$, 0.32 SiMe₂. - ¹¹B-NMR: $\delta = 28.48$. - ¹³C-NMR: $\delta =$ 2.35 C₃Si(NSiC₂)₂, 2.48 SiC₃, 3.04, SiC₂, 3.35 N(SiC₃)₂, 4.10 SiC₂, 5.89 $(NSiC_2)_2$. - ²⁹Si-NMR: $\delta = -19.86$ SiMe₂, -5.30 SiMe₃, -4.15Me₃Si-(NSiMe₂)₂, -2.23 N(SiMe₃)₂, 3.46 (NSiMe₂)₂, 4.07 SiMe₂ (Ring).

Zu einer Lösung von 0.05 mol (15.2 g) 1 in 250 ml n-Hexan und 50 ml THF werden 0.1 mol (24.5 g) Bis(trimethylsilyl)amino-trifluorsilan hinzugetropft. Die Reaktion wird bis zur Beendigung (¹⁹F-NMR-Kontrolle) bei Raumtemp. gerührt. Anschließend wird das Rohprodukt vom Lithiumfluorid getrennt und destillativ aufgearbeitet. 12 wird nach der Destillation durch Umkristallisation aus *n*-Hexan rein erhalten.

{2-[Bis(trimethylsilyl)amino]-3-[[bis(trimethylsilyl)amino]difluorsilyl]-2-fluor-4,4-dimethylcyclodisilazan-1-yl}{3-[[bis(trimethylsilyl)amino [difluorsilyl]-2,2,4,4-tetramethylcyclodisilazan-1-yl]dimethylsilan (12): Schmp. 95°C, Ausb. 16.6 g (35%). - MS: m/z (%) = 947 (4) $[M^+]$, 932 (100) $[M - CH_3]^+$. – IR: \tilde{v} = 1012 cm⁻¹ (Si₄N₂-Gerüstschwingung). – ¹H-NMR: $\delta = 0.09, 0.16$ SiMe₂, 0.22 ($Me_3Si_2NSiF_2(NSiMe_2)_2$ (⁵ $J_{IIF} = 0.8$ Hz) 0.24 (Me_3 - $Si_2NSiF_2(NSiF)$ (⁵ $J_{HF} = 0.8$ Hz), 0.27 (⁵ $J_{HF} = 2.4$ Hz) 0.28 $(Me_3Si)_2NSiF 0.37 (NSiMe_2)_2 0.42, 0.44 SiMe_2 (Ring). - {}^{13}C-NMR:$ $\delta = 3.43, 3.50 \text{ SiC}_2, 3.87 (C_3 \text{Si})_2 \text{NSiF}_2(\text{NSiC}_2)_2 ({}^4J_{\text{CF}} = 1.6 \text{ Hz}), 3.89$ $(C_3 \text{Si})_2 \text{NSiF}_2 \text{N} - \text{SiF} ({}^4J_{CF} = 1.2 \text{ Hz}), 4.43, 4.44 (C_3 \text{Si})_2 \text{N} - \text{SiF}, 4.51,$ 4.52 SiC₂, 5.03, 5.09, 5.11, 5.19 (NSiC₂)₂. - ¹⁹F-NMR: δ = 39.33 $\operatorname{SiF}_2(\operatorname{NSiMe}_2)_2$, 40.06 $F(A) - \operatorname{Si} - F(A')$ $\operatorname{NSiF}(X) [^2 J_{F(A)F(A')} =$ 48.0 Hz], 42.52 F(A)-Si-F(A')NSiF(X) [${}^{4}J_{F(A')F(X)} = 2.4$ Hz], 61.15 SiF(X)N(A)F - Si - F(A') [⁴ $J_{F(A)F(X)} = 0.6$ Hz]. - ²⁹Si-NMR: $\delta = -67.51 \text{ F}_2 Si - \text{N} - \text{SiF} (^2 J_{\text{SiF}} = 223.2 \text{ Hz}), -66.16 \text{ SiF}_2$ $(NSiMe_2)_2$ (¹ $J_{SiF} = 223.9$ Hz), -58.42 SiF ($J_{SiF} = 257.4$ Hz), -18.21 SiMe₂, -0.15 (³J_{SiF} = 3.7 Hz), 3.30 (³J_{SiF} = 4.0 Hz), (SiMe₃)₂NSiF, 5.50 (Me₃Si)₂NSiF₂(NSiMe₂)₂, 5.96 (NSiMe₂)₂, 6.43 $(Me_3Si)_2NSiF_2NSiF$, 8.42 SiMe₂ (Ring) (³J_{SiF} = 7.0 Hz).

CAS-Registry-Nummern

 $\begin{array}{l} 1:\ 115421-14-2\ /\ 2:\ 126978-41-4\ /\ 3:\ 126978-42-5\ /\ 4:\ 126978-43-6\ /\ 5:\ 126978-44-7\ /\ 6:\ 126978-45-8\ /\ 7:\ 108148-91-0\ /\ 8:\ 127002-10-2\ /\ 9:\ 126978-46-9\ /\ 10:\ 20124-50-9\ /\ 11:\ 126978-47-0\ /\ 12:\ 126978-48-1\ /\ 5iF_3Me:\ 373-74-0\ /\ 5iF_3CMe_3:\ 60556-38-9\ /\ 5iF_2Me_2:\ 353-66-2\ /\ F_2BN(SiMe_3)_2:\ 2251-46-9\ /\ F_3SiN(SiMe_3)_2:\ 2251-47-0\end{array}$

- L. W. Breed, Inorg. Chem. 7 (1968) 1940.
 W. Fink, Angew. Chem. 78 (1966) 803; Angew. Chem. Int. Ed. Engl. 5 (1966) 760.
- ³⁾ U. Klingebiel, Nachr. Chem. Tech. Lab. 35 (1987) 1042
- ⁴⁾ K. Dippel, U. Klingebiel, F. Pauer, G. M. Sheldrick, D. Stalke, Chem. Ber. 123 (1990) 779
- ⁵⁾ K. Dippel, U. Klingebiel, Z. Naturforsch., Teil B, im Druck.
- U. Klingebiel, L. Skoda, Z. Natuforsch., Teil B, 40 (1985) 913.
 H. Bürger, R. Mellies, K. Wiegel, J. Organomet. Chem. 142 (1977)
- ⁸⁾ H. Bürger, E. Bogusch, P. Geymayer, Z. Anorg. Allg. Chem. 349 (1967) 124.
- 9) W. Clegg, M. Hesse, U. Klingebiel, G. M. Sheldrick, L. Skoda, Z. Naturforsch., Teil B, 35 (1980) 1359.

[91/90]